Intervalos de confianza más habituales

 

1. Esperanza \(\mu\) de una variable \(X\) con distribución normal

\[\bbox[#ffff80]{\mu \in \left[{\bar{X}-\frac{S}{{\sqrt{n}}}t_{n-1,\alpha/2},\bar{X}+\frac{S}{{\sqrt{n}}}t_{n-1,\alpha/2}}\right]}\]  

2. Esperanza \(\mu\) de una variable \(X\) (normal o no) con una muestra grande (\(n\ge 30\))

\[\bbox[#ffff80]{\mu \in \left[{\bar{X}-z_{\alpha/2}\frac{S}{{\sqrt{n}}},\bar{X}+z_{\alpha/2}\frac{S}{{\sqrt{n}}}}\right]}\]

3. Varianza \(\sigma^{2}\) de una variable \(X\) con distribución normal

\[\bbox[#ffff80]{\sigma^2 \in \left[\frac{\left(n-1\right)S^{2}}{\chi_{n-1,\alpha/2}^{2}},\,\frac{\left(n-1\right)S^{2}}{\chi_{n-1,1-\alpha/2}^{2}}\right]}\]  

4. Diferencia de medias de variables normales independientes

\[\bbox[#ffff80]{\mu_1-\mu_2\in\left[\left({\bar{X}_{1}-\bar{X}_{2}}\right)\pm t_{n,}{}_{\alpha/2}\sqrt{\frac{{s_{1}^{2}}}{{n_{1}}}+\frac{{s_{2}^{2}}}{{n_{2}}}}\right]} \qquad \; {\small n=\frac{{\left({\frac{{s_{1}^{2}}}{{n_{1}}}+\frac{{s_{2}^{2}}}{{n_{2}}}}\right)^{2}}}{{\left({\frac{{s_{1}^{2}}}{{n_{1}}}}\right)^{2}\frac{1}{{n_{1}-1}}+\left({\frac{{s_{2}^{2}}}{{n_{2}}}}\right)^{2}\frac{1}{{n_{2}-1}}}}}\]

 

5. Diferencia de medias de variables normales emparejadas

\[\bbox[#ffff80]{\mu_1-\mu_2\in\left[\left({\bar{X}_{1}-\bar{X}_{2}}\right)\pm t_{n-1,\alpha/2}\frac{{S_{D}}}{{\sqrt{n}}}\right]}\]

donde:

\(S_{D}=\sqrt{S_{1}^{2}+S_{2}^{2}-2S_{12}}=\sqrt{S_{1}^{2}+S_{2}^{2}-2rS_{1}S_{2}}\)

 

6. Diferencia de medias de variables no normales independientes (sólo si \(\small n_{1}\ge30,n_{2}\ge30\)).

\[\bbox[#ffff80]{\mu_1-\mu_2\in\left[\left({\bar{X}_{1}-\bar{X}_{2}}\right)\pm z{}_{\alpha/2}\sqrt{\frac{{s_{1}^{2}}}{{n_{1}}}+\frac{{s_{2}^{2}}}{{n_{2}}}}\right]}\]

 

7. Diferencia de medias de variables no normales emparejadas (sólo si \(\small n\ge 60\))

\[\bbox[#ffff80]{\mu_1-\mu_2\in\left[\left({\bar{X}_{1}-\bar{X}_{2}}\right)\pm z_{\alpha/2}\frac{{S_{D}}}{{\sqrt{n}}}\right]}\]

siendo \(\small S_{D}=\sqrt{S_{1}^{2}+S_{2}^{2}-2S_{12}}=\sqrt{S_{1}^{2}+S_{2}^{2}-2rS_{1}S_{2}}\)

 

8. Cociente de varianzas \(\sigma_{1}^{2}/\sigma_{2}^{2}\) de variables normales.

\[\bbox[#ffff80]{\frac{\sigma_1^2}{\sigma_2^2} \in \left[\frac{S_{1}^{2}/S_{2}^{2}}{F_{n_{1}-1,n_{2}-1,\alpha/2}},\frac{S_{1}^{2}/S_{2}^{2}}{F_{n_{1}-1,n_{2}-1,1-\alpha/2}}\right]}\]

 

9. Intervalo de confianza para la proporción \(\pi\) de éxitos en una \(B(n,\pi)\).

Sean \(n\) el tamaño de la muestra y \(N_{E}\) el número de éxitos observados.

  • Método de Agresti-Coull (sólo si \(n>40\), \(N_E\ge5\), \(n-N_E\ge5\)). Llamando: \(\tilde{N}_{E}=N_{E}+z_{\alpha/2}^2/2\;\), \(\tilde{n}=n+\left(z_{\alpha/2}\right)^{2}\) y \(\tilde{\pi}=\tilde{N}_{E}/\tilde{n}\):

\[\bbox[#ffff80]{\pi \in \left[{\tilde{\pi}\pm z_{\alpha/2}\sqrt{\frac{{\tilde{\pi}\left({1-\tilde{\pi}}\right)}}{{\tilde{n}}}}}\right]}\]

  • Método de Clopper y Pearson (cuando no se puede aplicar el anterior). Llamando: \(F_{1}=F_{2(n-N_{E}+1),2N_{E},\alpha/2}\) y \(F_{2}=F_{2(N_{E}+1),2(n-N_{E}),\alpha/2}\):

\[\bbox[#ffff80]{\pi \in \left[\frac{N_{E}}{{(n-N_{E}+1)F_{1}+N_{E}}},\frac{{(N_{E}+1)F_{2}}}{{(n-N_{E})+(N_{E}+1)F_{2}}}\right]}\]

 

10. Comparación de proporciones de dos variables binomiales \(X_1\) y \(X_2\)

Se han realizado \(n_1\) observaciones de \(X_1\) con \(N_{E_1}\) éxitos y \(n_2\) observaciones de \(X_2\) con \(N_{E_2}\) éxitos. Sean \(\hat{\pi_1}=\frac{N_{E_1}}{n_1}\) y \(\;\hat{\pi_2}=\frac{N_{E_2}}{n_2}\) las proporciones observadas de éxitos. Si \(n_{1}\ge30\), \(n_{2}\ge30\):

  • Intervalo de confianza para la diferencia de proporciones

\[\bbox[#ffff80]{\left[{\left(\pi_{1}-\pi_{2}\right)\pm\left(z_{\alpha/2}\sqrt{\frac{{\hat{\pi}_{1}\left({1-\hat{\pi}_{1}}\right)}}{n_{1}}+\frac{{\hat{\pi}_{2}\left({1-\hat{\pi}_{2}}\right)}}{n_{2}}}+\frac{1}{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right)}\right]}\]

  • Intervalo de confianza para el cociente de proporciones

\[\bbox[#ffff80]{\left(\frac{\pi_{1}}{\pi_{2}}\right)\in\left[\left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{2}}\right)\cdot\exp\left(\pm z_{\alpha/2}\sqrt{\frac{\left(1-\hat{\pi}_{1}\right)}{n_{1}\hat{\pi}_{1}}+\frac{\left(1-\hat{\pi}_{2}\right)}{n_{2}\hat{\pi}_{2}}}\right)\right]}\]

 

11. Intervalo de confianza para la esperanza \(\mu\) de una distribución exponencial

\[\bbox[#ffff80]{\mu\in\left[\frac{2n\bar{X}}{\chi_{2n,\alpha/2}^{2}},\frac{2n\bar{X}}{\chi_{2n,1-\alpha/2}^{2}}\right]}\]

 

12. Intervalo de confianza para el parámetro \(\lambda\) de una distribución de Poisson.

\[\bbox[#ffff80]{\lambda \in \left[{\frac{1}{{2n}}\chi_{n_{1},1-\alpha/2}^{2},\frac{1}{{2n}}\chi_{n_{2},\alpha/2}^{2}}\right]}\]

siendo: \(n_{1}=2T,\,\,\,\,\,n_{2}=2(T+1),\,\,\,\,\,T=\sum_{i=1}^{n}X_{i}\)

 

 

 





© 2016 Angelo Santana, Carmen N. Hernández, Departamento de Matemáticas   ULPGC